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Introduction 
 

Literature reviews are time- and 

resource-intensive. A typical large 

systematic literature review (SLR) 

requires many months to complete; 

such SLRs were estimated to cost USD 

141,194 each in 2019.1 This has led to 

an increasing focus on automating 

literature review tasks using artificial 

intelligence (AI) – specifically, machine 

learning (ML), which uses algorithms to 

identify patterns in data (ML may be 

supervised or unsupervised), and 

natural language processing (NLP), 

which enables computers to 

understand, interpret, generate, and 

respond to human language in a 

meaningful manner.2,3 

 

Historically, tests on using AI in various 

SLR tasks have yielded mixed results. 

Furthermore, there is no consensus on 

a standard approach to validate the 

performance of AI models on specific 

tasks. Over the last few years, 
bidirectional encoder representations 

from transformers (BERT) models pre-

trained on relevant data have been 

assessed for their ability to classify data 

appropriately while conducting SLRs.3,4,5 

Some positive findings have been 

demonstrated in the area of 

title/abstract (ti/ab) screening.6,7,8 

However, the following issues have 

been reported: 

 

1. Variable accuracy: Ti/ab 

screening accuracy levels have 

not been replicated across the 

literature 4,7,8,9,10 

2. Limited focus: The available 

data has mostly focused on 

interventional studies with 

safety/efficacy/effectiveness 

outcomes. Limited tests have 

been reported for observational 

studies (which have generally 

yielded lower accuracy) 8,11,12 

3. Methodological challenges: 

Most automated approaches have 

implemented a probabilistic 

approach, with citations ranked by 

probability of being included. This 

differs from traditional human 

screening, therefore, it is not 

always clear when it is safe to 

dispense with manual screening 

altogether 11 

 
 

4. Non-intuitive approach: Most 

automated approaches appear to 

provide a single final assessment of 

inclusion/exclusion of a citation, while 

traditional human screening also 

provides a reason for exclusion 

 

Given this, it is not entirely surprising 
that a recent review on automated 
literature reviews concluded that “no 
single platform appeared to be 
sufficiently accurate and reliable to 
date” 13 

 
In the past 12 months, the 

situation has changed 

significantly. In addition to traditional 

BERT models, we also have access to 

an ever-increasing suite of large 

language models (LLMs) such 

Generative Pre-trained Transformer 

(GPT), Large Language Model Meta AI 

(LLaMa) and GEMINI, which are 

trained to predict language and writing 

based on large datasets of written 

language. 14

Artificial Intelligence in Systematic Literature Reviews 

Part 1 | AI-aided Title/Abstract Screening 

 
 

 

Bridge has a well-established interest in exploring the role of artificial intelligence (AI) in 

delivering systematic literature reviews (SLRs). With the emergence of novel and powerful 

large language models (LLMs), we restarted our research comparing the performance of 

these models against our extensive in-house datasets, which have been robustly human-

QC'ed for over 100 SLRs of different types. In this first paper of the series, we share our 

methodology and results on AI performance in title/abstract screening. We will release 

further papers as our research continues. 
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Evaluating newer AI models 
 
At Bridge, we have examined the accuracy of available AI models over the years against our ‘gold-standard’ reference datasets*. Our 
position in 2021, after an extensive research program using the best commercially available AI tools of that time, was that cautious 
optimism was warranted, but that full-scale adoption of AI tools into SLRs was not yet feasible. 15 

 

After novel LLMs became available, we instituted a comprehensive program to evaluate their performance across all key stages in a 
literature study; namely, ti/ab screening, full-text screening, simple data extraction and simple text summaries. Evaluation at each 
stage consists of a structured five-step process (Figure 1).  
 
In this first paper in our AI in SLRs series, we present our findings on AI-aided ti/ab screening, which is now at step 5. 
 
 

Figure 1: Structured approach to AI testing 
 

 
 
 
 

 

 

 

 

 
 

 
 

 

Step 1: Landscaping of potential models 

 

After an initial scoping exercise, we identified the five most promising AI models based on pre-specified criteria (Table 1). 

 

Table 1: Key models identified after landscaping process 

 

Name Type Brief description 

BiomedNLP-PubMedBERT-base-

uncased-abstract-fulltext 
Pre-trained BERT 

model 

Pretrained language model specifically designed for biomedical natural 
language processing tasks. It was trained from scratch using abstracts 
and full-text articles from PubMed and PubMed Central 

Medicalai/ 

ClinicalBERT 
Pre-trained BERT 

model 

Pretrained language model, trained on a large multicenter dataset with 

a large corpus of 1.2 billion words on diverse diseases 

BiomedVLP-CXR-BERT-general 
Pre-trained BERT 
model 

Trained from a randomly initialized BERT model via MLM on PubMed 
abstracts and clinical notes from the publicly-available MIMIC-III and 
MIMIC-CXR. This general model is expected be applicable for research 
in clinical domains other than chest radiology through domain-specific 
fine-tuning 

BERT-base-uncased 
Pre-trained BERT 

model 
Model pretrained on the English language using an MLM objective 

GPT-4 

Multimodal 

generative AI 
model 

Multimodal LLM created by OpenAI, and the fourth in its series of GPT 

foundation models; pretrained using both public data and "data licensed 
from third-party providers" 

BERT=Bidirectional Encoder Representations from Transformers; GPT-4=Generative Pre-trained transformer; LLM=large language model; MLM=masked 

language modelling. 

 

The BERT models were accessed via the Hugging Face platform, while GPT-4 was accessed using the OpenAI application 
programming interface (API). 
 
 
 

 

 
* Bridge ‘gold standard’ reference datasets are fully QC’ed human-screened ti/ab screening datasets available in-house across >100 reviews 
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Step 2: Fine-tuning and optimization 
 
Fine-tuning the BERT models 

 

Title/abstract screening itself has several steps, corresponding to 

the population, indication, comparator, outcomes, and study 

design (PICOS) parameters. Different models appear to have 

different advantages; therefore, the BERT models were further 

trained using Bridge reference datasets for each screening step. 

In this way, we developed fine-tuned versions of each (pre-

trained) BERT model for each screening parameter. 
 

Optimizing GPT4 

 

GPT4 did not require fine-tuning (note that fine-tuning 

functionality in GPT4 was not available when we conducted our 

ti/ab screening assessment in Q2-Q3 2023),but required the 

use of the most appropriate prompts. We automated this task 

with Python libraries including Langchain (for prompts 

structuring and engineering) and OpenAI for API access. GPT 

prompts were created separately for each screening parameter. 

 

 
 

 
 
Step 3: Initial testing 
 
Initial testing of individual ti/ab screening 

parameters 

 

The optimal fine-tuned BERT models and GPT4 were then 

evaluated against human-screened ti/ab screening 

datasets for five SLR projects. These SLRs were selected 

to cover a range of research question complexities, 

therapy areas, study designs of interest, and outcomes 

(Table 2). 

Each screening parameter (as per the PICOS) was 

evaluated separately, i.e., the classification of ti/abs by 

the AI models was compared with the human 

classification. As an example of the output from initial 

testing for individual screening parameters, Table 3 

shows the accuracy of a range of fine-tuned models for 

the ‘review’ parameter for a single project.  

 

Table 2: Projects for initial testing 
 

Indication Outcomes Study designs 

Anemia associated with chronic 
kidney disease 

Safety 
Efficacy 

Effectiveness 
Tolerability 

Interventional studies 
Prospective cohort studies 

Metastatic castration-resistant 
prostate cancer 

Safety 
Efficacy 

Effectiveness 
Tolerability 

Interventional studies 

Atopic dermatitis 
Burden of illness (clinical, humanistic, 

economic burden) 

Observational studies 
Systematic literature reviews 

Narrative reviews 

Soft tissue sarcoma 

Safety 
Efficacy 

Effectiveness 
Quality of life 
Tolerability 

Interventional studies 
Prospective cohort studies 

Retrospective cohort studies 

Borderline personality disorder 
Burden of illness (clinical, humanistic, 

economic) 

Observational studies 
Systematic literature reviews 

Narrative reviews 

 
 

Table 3: Accuracy of different AI models in classifying articles as reviews (vs primary studies) from ti/abs in the anemia-CKD 

project 
 

 Accuracy Sensitivity Specificity NPV PPV 

Model A 95% 97% 92% 94% 96% 

Model B 95% 96% 94% 96% 95% 

Model C 93% 97% 86% 91% 96% 

Model D 95% 97% 92% 94% 96% 

Model E 91% 90% 94% 95% 87% 

Model F 95% 98% 91% 97% 94% 

CKD=chronic kidney disease; NPV=Negative predictive value, PPV=Positive predictive value; ti/ab=title/abstract. 
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Initial testing of combined ti/ab screening parameters 

 

The best-performing models (including BERT and GPT4) with the highest accuracy were selected, with the emphasis on sensitivity to 

ensure that no key articles (or very few) were excluded. These models were then used in sequence for each step in the screening 

flowchart (akin to human screening) to determine the final eligibility decision for ti/abs, and the screening accuracy was calculated 

(Table 4). 
 

In addition to ti/ab sensitivity, we also calculated the ‘practical’ sensitivity, which – in our view - is the more relevant parameter, 

i.e., of the publications that were eventually included for final reporting in the project, how many were correctly identified for inclusion 
by AI during ti/ab screening. Thus, taking the example of the atopic dermatitis SLR, of the total number of citations that were 

eventually used for data reporting, 98% were correctly included by automated ti/ab screening, and only 2% were incorrectly excluded 

(false negatives). Overall, ‘practical’ sensitivity ranged from 89% to 98% across projects, and specificity from 68% to 89% (Table 4). 

 

 

Table 4: Results from initial testing for the five projects 
 

Project topic 
Total 
hits 

Accuracy 
Ti/ab 

Sensitivity 
‘Practical’ 
Sensitivity 

Specificity PPV NPV TP FP TN FN 

Anemia-CKD 3740 89% 89% 96% 89% 54% 98% 428 370 2891 51 

mCRPC 3885 85% 86% 90% 85% 62% 95% 748 456 2555 126 

Atopic 
dermatitis 

7356 69% 93% 98% 68% 9% 100% 222 2247 4869 18 

Soft tissue 
Sarcoma 

2149 82% 82% 95% 82% 38% 97% 212 343 1549 45 

Borderline 
personality 
disorder 

3464 74% 82% 89% 73% 11% 99% 113 884 2443 24 

CKD=chronic kidney disease; FN=false negative; FP=false positive; mCRPC=metastatic castration-resistant prostate cancer; NPV=negative predictive value; 

PPV=positive predictive value; Ti/ab=title abstract; TN=true negative; TP=true positive. 

 

Step 4: Validation 

 

Having tested the AI models across 5 projects, we then validated them across additional datasets: two internal datasets where the 

Bridge AI team had no prior knowledge of any results, and an external Cochrane SLR where the AI team were ‘blinded’ to results. 

We also assessed a workload/time reduction metric to evaluate the efficiency of the AI-aided screening compared to human screening.  
The ‘practical sensitivity’ and specificity remained high across the three projects, providing evidence that the accuracy of the fine-tuned 

BERT models and GPT prompts was transferable across projects. The workload reduction was >90% in two of three projects 

(Table 5). 

 

Table 5: Results from validation testing 
 

 
Total 
hits 

Accuracy 
Ti/ab 

Sensitivity 
‘Practical’ 
Sensitivity 

Specificity 
Workload 
reduction 

PPV NPV TP FP TN FN 

Advanced 
met. 
NSCLC 
(safety/ 
efficacy) 

2871 97% 84% 98% 98% 91% 56% 99% 87 68 2699 17 

Depression 
in cancer 
[Cochrane] 
(safety/ 
efficacy) 

5550 98% 63% 83% 98% 98% 28% 100% 33 84 5414 19 

Post-
traumatic 
stress 
disorder 
(burden of 
illness) 

7065 65% 65% 96% 65% 64% 4% 99% 102 2433 4475 55 

FN=false negative; FP=false positive; met.=metastatic; NPV=negative predictive value; NSCLC=non-small-cell lung cancer; PPV=positive predictive value; Ti/ab=title 

abstract; TN=true negative; TP=true positive. 
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Reflection on findings and next steps 

Overall, the accuracy of the models in ti/ab screening was 
very high. The accuracy for conceptually more 
straightforward, though still quite complex, 
efficacy/effectiveness/safety-focused SLRs was at or 
above high-performing human standards. 16 For the more 
conceptually challenging burden-of-illness SLRs, the ti/ab 
screening performance was impressive, and we believe 
will only continue to improve. These models were tuned 
for sensitivity and achieved a high ‘practical’ sensitivity of 
83%-98% across the SLRs. At the same time, specificity is 
also critical for practical workload reduction, and this is an 
area where we saw the biggest advance over our previous 
research. 15 The workload reduction was 64%-98% across 
the SLRs, corresponding to many days/weeks of time 
saved in ti/ab screening per SLR. 

Bridge is already in the process of sharing the detailed 
findings of its research to date across its client base, and 
as of January 2024, two AI-enabled literature reviews 
have been completed for clients, and a further seven are 
underway in which AI-enabled screening is central to the 
methodology.  

 

Glossary 

 

Alongside the adoption of AI tools into client work, our AI 
workstream research program continues. We plan to share our 
findings [positive and negative] on the performance of these 
models on full text screening, data extraction and simple 
summaries as the data emerges in the coming months. Our very 
next AI focused white paper will be on the fast-moving field of 
‘prompt engineering.’ 

In addition, we have expanded our AI workstream beyond SLRs, 
to examine use cases across health economics and outcomes 
research (HEOR) and evidence generation. Once again, we will 
share our methodology and findings as soon as is practical. 

As the field continues to evolve, the potential of AI to transform 
literature studies, and HEOR more generally, remains significant. 
With the advent of increasingly high-quality data comparing the 
efficacy of AI systems to conventional human-led methods, key 
institutions that effectively set methodological benchmarks for 
SLRs — such as peer-reviewed journals, Cochrane, and Health 
Technology Assessment bodies — will need to establish specific 
validation criteria for AI systems. This will pave the way for AI-
enabled SLRs to become broadly recognized and adopted. 

 

AI: Artificial Intelligence is a branch of 
computer science that aims to create 
systems capable of performing tasks that 
normally require human intelligence. These 
tasks include visual perception, speech 
recognition, decision-making, and 
translation between languages.  

BERT (Bidirectional Encoder 
Representations from Transformers): 
BERT is a model based on the transformers 
architecture for natural language processing 
pre-training developed by Google. It is 
designed to help computers understand the 
meaning of ambiguous language in text by 
using surrounding text to establish context. 
The BERT model is pre-trained on a large 
corpus of text and then fine-tuned for 
specific tasks like question answering or 
sentiment analysis. Unlike previous models, 
BERT takes into account the full context of 
a word by looking at the words that come 
before and after it—hence it is bidirectional. 

Gemini: Gemini is a family of multimodal 
large language models developed by 
Google DeepMind. 

GPT: Generative Pre-trained Transformer 
refers to a series of language processing AI 
models developed by OpenAI. These 
models utilize a transformer architecture for 
deep learning and are pre-trained on a vast 
corpus of text data. The "generative" 
aspect refers to the model's ability to 
generate coherent and contextually 
relevant text based on input prompts. 

In supervised learning, the algorithm is 
trained on a pre-defined set of training 
examples, which then facilitate its ability to 
reach an accurate conclusion when given 
new data. 

In unsupervised Learning, the algorithm is 

and AI. It is best known for its open-
source transformers library and platform 
(https://huggingface.co/), which provides 
a collection of pre-trained models and 
tools for a variety of NLP tasks. 

LLaMa: Large Language Model - Meta AI, 
is a series of large language models 
developed by Meta AI (previously 
Facebook AI). These models are designed 
to process and understand human 
language, offering capabilities similar to 
other large language models in tasks like 
translation, text generation, and 
information extraction. 

LLM: Large Language Models are a type 
of artificial intelligence models that 
process, understand, generate, and 
sometimes translate human language. 
These models are "large" both in terms of 
the size of their neural network 
architecture (having a large number of 
parameters) and the vast amount of data 
they are trained on. LLMs are often based 
on transformer architectures and are 
trained on diverse datasets from the 
internet or other large text corpora. 

ML: Machine Learning, a subset of AI, 
involves the development of algorithms 
that can learn and make predictions or 
decisions based on data. This learning 
process is automated and improved upon 
over time based on experience. 

NLP: Natural Language Processing is a 
field at the intersection of computer 
science, artificial intelligence, and 
linguistics. It involves the development of 
algorithms and systems that enable 
computers to understand, interpret, and 
generate human language in a valuable 
way. Key tasks in NLP include text 

NPV = True Negatives / (True Negatives + 
False Negatives) 

PPV: Positive Predictive Value is the 
proportion of positive test results that are 
true positives. 

PPV = True Positives / (True Positives + 
False Positives) 

‘Practical’ sensitivity: In the context of 
AI-aided ti/ab screening, we have defined 
practical sensitivity to refer to those true 
positives that were eventually included for 
final reporting in the review, i.e., the 
proportion of final actual positives that 
were correctly identified as such during AI 
ti/ab screening. 

Sensitivity: Sensitivity measures the 
proportion of actual positives that are 
correctly identified as such.  

Sensitivity = True Positives/ (True 
Positives + False Negatives) 

SLR: A systematic literature review is a 
methodical and comprehensive approach 
to identifying, evaluating, and synthesizing 
all relevant research on a specific topic or 
research question. 

Specificity: Specificity measures the 
proportion of actual negatives that are 
correctly identified as such. 

Specificity = True Negatives / (True 
Negatives + False Positives)  

TLR: A targeted literature review is a 
more focused approach than an SLR and 
is typically used to address specific, often 
narrower, research questions. A TLR 
usually does not involve a structured 
search of the literature, but instead relies 
on targeted, keyword-based non-
exhaustive searches of databases. 
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given data without predefined labels and is 
allowed to find structure in its input on its 
own. 

Hugging Face: Hugging Face is a 
technology company specializing in NLP  

translation, sentiment analysis, speech 
recognition, and language generation. 

NPV: Negative Predictive Value is the 
proportion of negative test results that are 
true negatives. 
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