Paul M. Matthews, Digant Gupta, Deepali Mittal, Wenjia Bai, Antonio Scalfari, Kevin G. Pollock, Vishal Sharma, Nathan Hill
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, degenerative disease of the central nervous system that affects approximately 2.8 million people worldwide. Compelling evidence from observational studies and clinical trials indicates a strong association between brain volume loss (BVL) and the accumulation of disability in MS. However, the considerable heterogeneity in study designs and methods of assessment of BVL invites questions concerning the generalizability of the reported findings. Therefore, we conducted this systematic review to characterize the relationship between BVL and physical disability in patients with MS.
A systematic literature search of MEDLINE and EMBASE databases was performed supplemented by gray literature searches. The following study designs were included: prospective/retrospective cohort, cross-sectional and case-control. Only English language articles published from 2010 onwards were eligible for final inclusion. There were no restrictions on MS subtype, age, or ethnicity. Of the 1620 citations retrieved by the structured searches, 50 publications met our screening criteria and were included in the final data set.
Across all BVL measures, there was considerable heterogeneity in studies regarding the underlying study population, the definitions of BVL and image analysis methodologies, the physical disability measure used, the measures of association reported and whether the analysis conducted was univariable or multivariable. A total of 36 primary studies providing data on the association between whole BVL and physical disability in MS collectively suggest that whole brain atrophy is associated with greater physical disability progression in MS patients. Similarly, a total of 15 primary studies providing data on the association between ventricular atrophy and physical disability in MS suggest that ventricular atrophy is associated with greater physical disability progression in MS patients. Along similar lines, the existing evidence based on a total of 13 primary studies suggests that gray matter atrophy is associated with greater physical disability progression in MS patients. Four primary studies suggest that corpus callosum atrophy is associated with greater physical disability progression in MS patients. The majority of the existing evidence (6 primary studies) suggests no association between white matter atrophy and physical disability in MS. It is difficult to assign a relationship between basal ganglia volume loss and physical disability as well as medulla oblongata width and physical disability in MS due to very limited data.
The evidence gathered from this systematic review, although very heterogeneous, suggests that whole brain atrophy is associated with greater physical disability progression in MS patients. Our review can help define future imaging biomarkers for physical disability progression and treatment monitoring in MS.